Quantum Field Theory

Set 5: solutions

Exercise 1

Given the group properties we know that g(p(a, §)) € G, so it is a function
p:R" x R" — R".

Given the assumption that G is a Lie group we know that this function is smooth and thus it can be expanded in
series in a finite neighborhood of the origin. Let’s start by using the property of existence of the identity element
e. In formulas we have

g(a) =g(a)-e=g(a)-g(0) = g(p(a,0))
and
gla) =e-g(a) =g(0) - g(a) = g(p(0,a))

This means that when one of the two argument is zero we have
p'(a,0) = p'(0,a) = a’
where we have introduced the index i of R". The most general series expansion for p’ around the origin is then
p'(a,B) = ' + B+ Tgpa B + Bipea®a’ B¢ + Dy 8°5 + O((a, B)*)

where szc is symmetric in the indices a and b while D(izbc is symmetric in b and c. Note that terms like o? are
excluded by the condition we found earlier from the property of the identity element. For what follows we will
only need the expansion up to the second order, so we will neglect the tensors B and D.

The tensor Téb has in principle no symmetry properties in the two indices a and b, but we will see now that the
symmetric part can always be eliminated by a change of coordinates, while the antisymmetric part can’t. Note
that since the choice of coordinates in a manifold is arbitrary, this means that the symmetric part of T" cannot
contain any information about the group structure. In this new coordinate system the product will then look like

p/i(a',ﬁl) _ a/i + ﬁ/i 4 Tfab]amﬁlb + O((a,ﬁ)3,
where we have defined the antisymmetric part of 77, as

i ; — Tia %
Tap) = % = Ty

A generic change of coordinates expanded up to the quadratic order in the expansion has the form
o' =o'+ 5 0%t + 0(>a?).

Note that 6!, is symmetric in a and b by definition. It’s then natural to try to find a particular form for § for
which the symmetric part of 7' cancels out. Since «, [ and p are all coordinates in the manifold, they will all
transform in the same way. Namely _ _ _
5/1 _ BZ + 52bﬂaﬂb + O(ﬂg)
and _ _ _
P (e, 8') = p' (e, B) + o™ (e, B)p" (v, B) + O(p(ev, B)).
Let’s now expand the right hand side of this equation and express it in terms of o/ and ’. First of all we need to

invert the change of variable to express a as a function of /. We can do this iteratively since we are working at
the quadratic order in the expansion

O(i _ O/i —531)05(1(0/)0}7(0/) -‘1-0(0/3) — O/i _ 5Zba/aa/b _1_0(0[/3)7



where in the last equality we have substituted « using the first equality. Using this result, the product function
in the new coordinates then looks like
P, B) =p'(a, B) + 640" (@, B)p" (@, B) + O(p(a, B)%)
=a’ + '+ Tpa® B + 0 (0 + ) (" + 8°) + O((e, B)°)
:(O/i _ §Zba/aa/b) + (6/ 6;bﬁ/aﬁ/b) + Téba/aﬁ/b + 5(1'11)(0/1 + B/a)(a/b + 5/b) + O((O/, B/)?))

:a/i 4 ﬁ/i + Tibalaﬂ/b + a(zlb(aaﬁlb + Oé/bB/a) + O((a',ﬁ’)?’)
Decomposing T into symmetric and antisymmetric pieces,

Top = Tlapy + Thapy»
where we have defined the symmetric part of T" as

7 b ba __ qm
Tary = 55— = Toay>
we can write p’ as

; ; i Tiab
p”(al7ﬁ/) _ a/z +5” _'_T[zab]a/aﬁ/b 4 ( (2 ) +5Z7,b> (O/aﬁ/b +O/bﬁ/a) + O((O[/7ﬂl)3).
It is thus clear that if we choose ]
) T(Zab)

ab — )
2
the last piece vanishes and p’* depends only on the antisymmetric part T, [’;lb]. From now on we will take the tensor
T to be antisymmetric in a and b without loss of generality.
Let’s now compute the coordinates of the inverse element

g(@) = gla)™".

From the definition of inverse we have

So we have the equation

0=rp'(a,a) =a' + o' +THha"a® + o((a, B)°)
We can solve this equation iteratively for & as a function of « to find

a'=—a' +THha%P 4 o((a, B)3) = —a' + o((a, B)?)
where the last equality is because T' is antisymmetric.

Let’s now compute the commutator

glcle, 8)) = g~ (a)g ™ (B)g(a)g(B)

for a and S close to the origin. Let’s rewrite the product of the first two group elements as such

g ()g™H(B) =

(9(B)g(a) ™" = g(p(B, @)).

In this way the commutator is given by
(o, B) = p'(p(B, @), p(e, B))).

Now we just have to expand this product using the formulas we found previously (for sake of notation, we will
omit the o((a, 3)3) in every equality)

ci(avﬂ) :p’(ﬁ(ﬁ,a),p(a,ﬂ))
=5 (8, a) +p'(a, B) + T5pp" (B, a)p" (v, B)
pl(67 Oé) —|—p(a, B) + Téb(_pa(67 a))pb(a, B)

=—(B'+a" + T,B%") + (o + B" + ThaB) + Tiy(—(B* + a*)) (e + )
= ( (ib - Tga)ﬂaab



where in the last line we have again dropped some terms due to the antisymmetry of T'. The computation we just
made proves that c¢(a, 8) close to the identity is linear in its arguments and antisymmetric.

The last thing we need to show to identify ¢ with the Lie product is that it satisfies the Jacobi identity. We will
now see that this comes from the associative property of the group

P (a,p(B,7) =p'(p(ax, B),7)

Since the Jacobi identity involves product of two 7' symbols, we will need to expand p to the cubic order, that is
restore the tensors B and D previously introduced. Let’s expand the left-hand side of this equation

P (e, p(B.7) =a’ +p'(8,7) + Tapa®p"(B.7) + Bopea®a’p* (B, ) + Diea®p" (B,1)p° (8. 7)
=a' + (B + 9" + 108" + BaneB*B8"7° + Diye8*9"7°)
+ Topa (B + 9" + Tey 397
+ Bigeaa®(B° +7°) + Dy (8 +7°)(B° +7°)
=a’ + B+ 4+ Ty B9 + Tapa® B° + Topa®y” + Ty Toga® 59
+ By BB + Blpea a8 + Blya®a’ ¢ + Dy 9"y + Dl B° ¢ + Dy oay*7
+ 2D 3.

In the last step we have used explicitly the symmetry properties of B and D. The right hand side gives a very
similar result

pi(pley, B),7) = + B+ + T}, BY" + Tipa B° + Ty’ + Thy Tl By
+ BiyB B + Bipoa®a’ B + Bly.aaly© + DLy Yy + Do B°8° + Dl
+ 2By B0

Many of the terms simplify leading to the equation

T;chdeéaﬁc d __ T;chadab/BC'yd _ QBi aaﬁb,yc _ 2Di aaﬁb,yc_

abe abe

Equivalently, collecting «, 8 and -~y _ _ _ _

ToeThe — TieTa, = 2Bipe — 2Dgpc.
The trick to recover the Jacobi identity is now to do an antisymmetric sum over all the permutation of the indices
a, b and ¢, that is, calling this equation eg(a, b, ¢), to compute

eq(a, b7 C) + EQ(b7 & a’) + EQ(C7 a, b) - EQ(bv a, C) - EQ(O‘7 C, b) - Eq(C, b7 a’)'

In this way, the terms on the right hand side will sum out to zero, since they are symmetric on the indices (a, b)
and (b, ¢) respectively. The left hand also simplifies greatly by using the antisymmetry property of T, leaving only
three terms

TaToe + Tip Tl + TiTay, = 0

a

that is, the Jacobi identity.

Exercise 2

We now show how one can build an irreducible representation of the Algebra of SU(2) and therefore also a

representation of the Group. Given the commutation relations

[T, T"] = i€ T,
one can compute the following

1 . )
[1%,7%] = 5 [T" 3T, 7" 7% = 42 [T',7%) £ ¢
‘
2
(73,7 + — [T3,7%] = =——— = +T*

V2

[T%,T'] =0,

[T%, 7] = % [T" +4T?, T —iT?] =

1 1
T3, 7% = — [T°,T" +iT%) = —
(1974 = 5 [1%.7 1] =

1 2 1 2 1] _ 3
[, 7] + 5 [1°. 7] = T°,



It’s easy to show that the sum of squared generators commutes with all the generators

3

> Tt Tt

a=1

3
=> (T[T, T + [T, T"] T*) = ieacT*T + i€qpT°T*

a=1

= iEabCTaTC - iecbaTcTa =0.

3
The operator J? = Z T*T* commutes with all the generators of the Algebra, therefore commutes with the whole
a=1
Group. In an irreducible representation ¥ one can use the Schur’s Lemma to prove that J2 has to be a multiple
of the identity:

3
.7 —7° \I/:J2—>ZTG7'“:M2><1,
a=1
where g is some constant that we will determine in the following.
3

Let us consider an irreducible representation where generators are represented by 7%, 73, 797% = 12 x 1, and let
us consider inside the vector space an eigenvector |m) of the generator 72 relative to the eigenvalue m:

3|m) = m|m).

The action of one of the other generators 7% sends |m) into another vector |m’) which one can show to be still an
eigenvector of 73 but with a different eigenvalue:

T3|m'> = T3Ti|m> = TiTS\m> + [Tg,Ti]|m> = mTi|m> + Ti|m> =(m=+ 1)Ti|m>,

that is to say the 7% generators acting on |m) change its eigenvalue by one unity. This is why they are called
raising and lowering operators. More precisely, if we call |m & 1) the state normalized to one respect to a given
scalar product, then

1 . 1 - - 1
[T m) I = (m|(r5) 5 ) = S (ml(r)? + (7)? #ilrt, 7 m) = o (mlp® = (1) F 7|m) = 5 (u* = m(m £ 1))
where it has been used (7F)" = 7. Therefore the correct normalization is
75 |m) = L\/;12 —m(m=+1)|m=+1).
V2

Moreover, from the previous equalities one can argue that p? —m(m £ 1) > 0, since we deal with a space with
positive definite norm (|7%|m)|? > 0). At the end

m? + |m| < p?.

This statement has two important consequences: firstly it’s a proof that u? is a positive quantity, and secondly
it imposes a limit on the dimension of an irreducible representation: indeed starting from a given state |m—)
one can apply the raising operator to get another state, independent from the original one. This will increase
also the value of m of one unity. If one were free to keep on applying 7+ he would end with a violation of the
inequality (note that since the Casimir operator (7)? is proportional to the identity, its eigenvalue u? is constant,
i.e. does not depend on m). Hence the action of the raising operator has to give a null state at a certain point.
This happens only when m(m + 1) = Muaz(Mmazr + 1) = p2. Starting from the state |m,,4,) one can apply the
lowering operator to decrease the value of m. As before after a finite number of steps one has to find a null state

()" Mimaz) < T [Mmae —n) =0 for some n,
and this will happen when (m —n)(m —n — 1) = Myin(Mmin — 1) = p2. Matching the two relations one finds
Mmin (mmin - 1) = Mmax (mmaa: + 1) = Mmazr = —Mmin-

Moreover m,,;, has been obtained starting from m,,,, with an integer number of steps equal to 2m.q. + 1. This
restricts the value of m,,., to be a positive integer or semi-integer. Summarizing, using the notation m,q. = 7,
an irreducible representation of the Algebra of SU(2) is characterized by



e A vector space with dimension 25 + 1 with a basis given by the eigenvectors of 73:
{lm)},  —i<m<
e The generators on this vector space are represented as follows

7°|m) = m|m),
3
> rrtm) = p*lm) = (G + 1)m),

a=1

) = %\/j(jJr ) = m(m £ 1D)jm +1).

As already said, these are representation of the algebra and therefore also of the SU(2) group. Not all of them
are representations of SO(3). The problem arises when one tries to pass from the algebra (which is somehow a
local representation of the group) to a global representation of the group. SO(3) has indeed the property that a
rotation of 27 around any axis must coincide with the identity. This restricts the value of j to be only integer (we
will see it explicitly in some example).

Finally one can consider some representation:

e j = 0 is the trivial representation and is called scalar representation.

e j = 1/2 is the first non trivial one. It’s only a representation of SU(2) and is called spinorial representation.
It’s composed by two states labelled by the value of j and m: |j =1/2,m = +£1/2).

e j =1 is a representation of both groups. It is called vectorial representation and corresponds to the adjoint
of SU(2) or the fundamental of SO(3). A basis for this representation is given by three states labelled by

|17 1>a |170>a |17 71>

Exercise 3

e By definition of direct sum we can write D in block diagonal form,

D; 0
p=( 5,)
Tt then follows trivially that D is a representation (in matrix products of D’s, D;’s and Dy’s will never mix
up, and since individually D; and D5 are representations, so will D be).

It is also clear that the vector vy @ v = (v1,v2) has dim V; + dim V5 components. So
dimV; @ Vo =dim Vi + dim V5.
For the final part of the question note that we can write A in blocks according to the V; and V5 subspaces,
Ann A
A= . 1
<A21 Ago (1)
By hypothesis the two matrices

AnnD1 A12Ds D1A1n DiAr
AD = DA = . 2
<A21D1 A22D2> ’ <D2A21 D2A22) @)

are equal. Given that D; and D, are inequivalent, the equality of the off-diagonal elements A15Ds = D1 A1
and As1 D1 = Dy Ay imply, by the second Shur’s lemma, A;o = As; = 0. Given that D, and Dy are
irreducible, the equality of the diagonal elements Ay1 D1 = D1 A11, Aas Dy = Do Asgs imply, by the first Shur’s
lemma, that All = )\1] and A22 = )\2[



e Given two vector spaces V1, Vo, with vectors |v1), |v2), the tensor product of the two is the set of all possible
pairs:
Vi@ Ve ={|v1) ® |vg), where v; € V;}.

Moreover, the tensor product is distributive,
(lv1) + |w1)) @ [v2) = |v1) @ [v2) + [w1) @ [v2),  |v1) @ (Jv2)+ | w2)) = |v1) @ |v2) + |v1) @ [w2).

In addition it can be shown that a basis of the tensor product of two vector spaces is given by all the possible
pairs obtained by taking one element from the basis of the first vector space and one element from the basis
of the second vector space.

The representation acting on the tensor product space is called tensor product representation, and it is easy
to show that indeed it is a true representation of the group (even if, in general, it is reducible). Denoting by
D'(g) and D?(g) two representations of the same element g of a given group G, acting on vector spaces Vi
and Vs, the tensor product representation D!(g) ® D?(g) = D'®?(g), has the following properties:

D'®%(g,)D'*2(gp) = (D(9a) ® D*(9a))(D*(g6) © D*(g8)) = D*(92) D" (g6) @ D*(9a) D*(g)
= Dl(gaogb)®D2(gaogb):D1®2(gaogb),
D'®*(e) = D'(e)®D*(e) =1y, ® ly, = lv,

where V is the tensor product space V =V; ® Vs.

In passing from first to second line it has been employed the fact that D' and D? act on different vector spaces,
thus they commute (note that this is true even if D! and D? are two copies of the same representation).
The system above shows that the tensor product representation is a representation of G.

It is also possible to build explicitly the generators of the group in the tensor product representation.
Denoting as (t{);; and (t)., the generators in representations D' and D? respectively, one can write down
the expression for an element near to the identity in representation D'®? as

[DYa)];; [D*()],, = [D'*(@)]

v ey = 05 + 10 (89)35]0zy + 10 (3) ] + O(a®)

= 0ij0uy + 10 [(1)i30uy + 0ij (15)y] + O(a?),
which can be written in tensor product notation as

D'(a)® D*(a) = D'Y®2(a) =1y, +ia®t] @ [1y, + ia®t5] + O(a?)
= ly +ia® [ty @ 1y, + 1y, @ 5] + O(a?).

The operators in squared parentheses are the generators in the tensor product representation.



