
Quantum Field Theory

Set 5: solutions

Exercise 1

Given the group properties we know that g(p(α, β)) ∈ G, so it is a function

p : Rn × Rn → Rn.

Given the assumption that G is a Lie group we know that this function is smooth and thus it can be expanded in
series in a finite neighborhood of the origin. Let’s start by using the property of existence of the identity element
e. In formulas we have

g(α) = g(α) · e = g(α) · g(0) = g(p(α, 0))

and
g(α) = e · g(α) = g(0) · g(α) = g(p(0, α))

This means that when one of the two argument is zero we have

pi(α, 0) = pi(0, α) = αi

where we have introduced the index i of Rn. The most general series expansion for pi around the origin is then

pi(α, β) = αi + βi + T i
abα

aβb +Bi
abcα

aαbβc +Di
abcα

aβbβc +O((α, β)4)

where Bi
abc is symmetric in the indices a and b while Di

abc is symmetric in b and c. Note that terms like α2 are
excluded by the condition we found earlier from the property of the identity element. For what follows we will
only need the expansion up to the second order, so we will neglect the tensors B and D.

The tensor T i
ab has in principle no symmetry properties in the two indices a and b, but we will see now that the

symmetric part can always be eliminated by a change of coordinates, while the antisymmetric part can’t. Note
that since the choice of coordinates in a manifold is arbitrary, this means that the symmetric part of T cannot
contain any information about the group structure. In this new coordinate system the product will then look like

p′i(α′, β′) = α′i + β′i + T i
[ab]α

′aβ′b +O((α, β)3,

where we have defined the antisymmetric part of T i
ab as

T i
[ab] ≡

T i
ab − T i

ba

2
= −T i

[ba].

A generic change of coordinates expanded up to the quadratic order in the expansion has the form

α′i = αi + δiabα
aαb +O(α3).

Note that δiab is symmetric in a and b by definition. It’s then natural to try to find a particular form for δ for
which the symmetric part of T cancels out. Since α, β and p are all coordinates in the manifold, they will all
transform in the same way. Namely

β′i = βi + δiabβ
aβb +O(β3).

and
p′i(α′, β′) = pi(α, β) + δiabp

a(α, β)pb(α, β) +O(p(α, β)3).

Let’s now expand the right hand side of this equation and express it in terms of α′ and β′. First of all we need to
invert the change of variable to express α as a function of α′. We can do this iteratively since we are working at
the quadratic order in the expansion

αi = α′i − δiabα
a(α′)αb(α′) +O(α′3) = α′i − δiabα

′aα′b +O(α′3),



where in the last equality we have substituted α using the first equality. Using this result, the product function
in the new coordinates then looks like

p′i(α′, β′) =pi(α, β) + δiabp
a(α, β)pb(α, β) +O(p(α, β)3)

=αi + βi + T i
abα

aβb + δiab(α
a + βa)(αb + βb) +O((α, β)3)

=(α′i − δiabα
′aα′b) + (β′i − δiabβ

′aβ′b) + T i
abα

′aβ′b + δiab(α
a + β′a)(α′b + β′b) +O((α′, β′)3)

=α′i + β′i + T i
abα

′aβ′b + δiab(α
aβ′b + α′bβ′a) +O((α′, β′)3)

Decomposing T into symmetric and antisymmetric pieces,

T i
ab = T i

(ab) + T i
[ab],

where we have defined the symmetric part of T as

T i
(ab) ≡

T i
ab + T i

ba

2
= T i

(ba),

we can write p′ as

p′i(α′, β′) = α′i + β′i + T i
[ab]α

′aβ′b +

(
T i
(ab)

2
+ δiab

)
(α′aβ′b + α′bβ′a) +O((α′, β′)3).

It is thus clear that if we choose

δiab = −
T i
(ab)

2
,

the last piece vanishes and p′i depends only on the antisymmetric part T i
[ab]. From now on we will take the tensor

T to be antisymmetric in a and b without loss of generality.

Let’s now compute the coordinates of the inverse element

g(ᾱ) ≡ g(α)−1.

From the definition of inverse we have

g(p(ᾱ, α)) = g(ᾱ)g(α) = e = g(0).

So we have the equation
0 = pi(ᾱ, α) = ᾱi + αi + T i

abᾱ
aαb + o((α, β)3).

We can solve this equation iteratively for ᾱ as a function of α to find

ᾱi = −αi + T i
abα

aαb + o((α, β)3) = −αi + o((α, β)3)

where the last equality is because T is antisymmetric.

Let’s now compute the commutator

g(c(α, β)) ≡ g−1(α)g−1(β)g(α)g(β)

for α and β close to the origin. Let’s rewrite the product of the first two group elements as such

g−1(α)g−1(β) = (g(β)g(α))−1 = g(p̄(β, α)).

In this way the commutator is given by

ci(α, β) = pi(p̄(β, α), p(α, β))).

Now we just have to expand this product using the formulas we found previously (for sake of notation, we will
omit the o((α, β)3) in every equality)

ci(α, β) = pi(p̄(β, α), p(α, β))

= p̄i(β, α) + pi(α, β) + T i
abp̄

a(β, α)pb(α, β)

= −pi(β, α) + p(α, β) + T i
ab(−pa(β, α))pb(α, β)

= −(βi + αi + T i
abβ

aαb) + (αi + βi + T i
abα

aβb) + T i
ab(−(βa + αa))(αb + βb)

= (T i
ab − T i

ba)β
aαb
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where in the last line we have again dropped some terms due to the antisymmetry of T . The computation we just
made proves that c(α, β) close to the identity is linear in its arguments and antisymmetric.

The last thing we need to show to identify c with the Lie product is that it satisfies the Jacobi identity. We will
now see that this comes from the associative property of the group

pi(α, p(β, γ)) = pi(p(α, β), γ)

Since the Jacobi identity involves product of two T symbols, we will need to expand p to the cubic order, that is
restore the tensors B and D previously introduced. Let’s expand the left-hand side of this equation

pi(α, p(β, γ)) =αi + pi(β, γ) + T i
abα

apb(β, γ) +Bi
abcα

aαbpc(β, γ) +Di
abcα

apb(β, γ)pc(β, γ)

=αi + (βi + γi + T i
abβ

aγb +Bi
abcβ

aβbγc +Di
abcβ

aγbγc)

+ T i
abα

a(βb + γb + T b
cdβ

cγd)

+Bi
abcα

aαb(βc + γc) +Di
abcα

a(βb + γb)(βc + γc)

=αi + βi + γi + T i
abβ

aγb + T i
abα

aβb + T i
abα

aγb + T i
abT

b
cdα

aβcγd

+Bi
abcβ

aβbγc +Bi
abcα

aαbβc +Bi
abcα

aαbγc +Di
abcβ

aγbγc +Di
abcα

aβbβc +Di
abcα

aγbγc

+ 2Di
abcα

aβbγc.

In the last step we have used explicitly the symmetry properties of B and D. The right hand side gives a very
similar result

pi(p(α, β), γ) =αi + βi + γi + T i
abβ

aγb + T i
abα

aβb + T i
abα

aγb + T i
abT

a
cdα

bβcγd

+Bi
abcβ

aβbγc +Bi
abcα

aαbβc +Bi
abcα

aαbγc +Di
abcβ

aγbγc +Di
abcα

aβbβc +Di
abcα

aγbγc

+ 2Bi
abcα

aβbγc.

Many of the terms simplify leading to the equation

T i
abT

b
cdα

aβcγd − T i
abT

a
cdα

bβcγd = 2Bi
abcα

aβbγc − 2Di
abcα

aβbγc.

Equivalently, collecting α, β and γ
T i
akT

k
bc − T i

kcT
k
ab = 2Bi

abc − 2Di
abc.

The trick to recover the Jacobi identity is now to do an antisymmetric sum over all the permutation of the indices
a, b and c, that is, calling this equation eq(a, b, c), to compute

eq(a, b, c) + eq(b, c, a) + eq(c, a, b)− eq(b, a, c)− eq(a, c, b)− eq(c, b, a).

In this way, the terms on the right hand side will sum out to zero, since they are symmetric on the indices (a, b)
and (b, c) respectively. The left hand also simplifies greatly by using the antisymmetry property of T , leaving only
three terms

T i
kaT

k
bc + T i

kbT
k
ca + T i

kcT
k
ab = 0

that is, the Jacobi identity.

Exercise 2

We now show how one can build an irreducible representation of the Algebra of SU(2) and therefore also a
representation of the Group. Given the commutation relations[

T a, T b
]
= iϵabcT

c,

one can compute the following[
T±, T±] = 1

2

[
T 1 ± iT 2, T 1 ± iT 2

]
= ± i

2

[
T 1, T 2

]
± i

2

[
T 2, T 1

]
= 0,[

T+, T−] = 1

2

[
T 1 + iT 2, T 1 − iT 2

]
= − i

2

[
T 1, T 2

]
+

i

2

[
T 2, T 1

]
= T 3,[

T 3, T±] = 1√
2

[
T 3, T 1 ± iT 2

]
=

1√
2

[
T 3, T 1

]
± i√

2

[
T 3, T 2

]
=

iT 2 ± T 1

√
2

= ±T±.
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It’s easy to show that the sum of squared generators commutes with all the generators[
3∑

a=1

T aT a, T b

]
=

3∑
a=1

(
T a
[
T a, T b

]
+
[
T a, T b

]
T a
)
= iϵabcT

aT c + iϵabcT
cT a

= iϵabcT
aT c − iϵcbaT

cT a = 0.

The operator J2 =

3∑
a=1

T aT a commutes with all the generators of the Algebra, therefore commutes with the whole

Group. In an irreducible representation Ψ one can use the Schur’s Lemma to prove that J2 has to be a multiple
of the identity:

Ψ : T a −→ τa Ψ : J2 −→
3∑

a=1

τaτa = µ2 × 1,

where µ is some constant that we will determine in the following.
Let us consider an irreducible representation where generators are represented by τ±, τ3, τaτa = µ2 × 1, and let
us consider inside the vector space an eigenvector |m⟩ of the generator τ3 relative to the eigenvalue m:

τ3|m⟩ = m |m⟩.

The action of one of the other generators τ± sends |m⟩ into another vector |m′⟩ which one can show to be still an
eigenvector of τ3 but with a different eigenvalue:

τ3|m′⟩ = τ3τ±|m⟩ = τ±τ3|m⟩+ [τ3, τ±]|m⟩ = mτ±|m⟩ ± τ±|m⟩ = (m± 1)τ±|m⟩,

that is to say the τ± generators acting on |m⟩ change its eigenvalue by one unity. This is why they are called
raising and lowering operators. More precisely, if we call |m ± 1⟩ the state normalized to one respect to a given
scalar product, then

|τ±|m⟩|2 = ⟨m|(τ±)†τ±|m⟩ = 1

2
⟨m|(τ1)2 + (τ2)2 ± i[τ1, τ2]|m⟩ = 1

2
⟨m|µ2 − (τ3)2 ∓ τ3|m⟩ = 1

2
(µ2 −m(m± 1))

where it has been used (τ±)† = τ∓. Therefore the correct normalization is

τ±|m⟩ = 1√
2

√
µ2 −m(m± 1)|m± 1⟩.

Moreover, from the previous equalities one can argue that µ2 − m(m ± 1) ≥ 0, since we deal with a space with
positive definite norm (|τ±|m⟩|2 ≥ 0). At the end

m2 + |m| ≤ µ2.

This statement has two important consequences: firstly it’s a proof that µ2 is a positive quantity, and secondly
it imposes a limit on the dimension of an irreducible representation: indeed starting from a given state |m−⟩
one can apply the raising operator to get another state, independent from the original one. This will increase
also the value of m of one unity. If one were free to keep on applying τ+ he would end with a violation of the
inequality (note that since the Casimir operator (τ)2 is proportional to the identity, its eigenvalue µ2 is constant,
i.e. does not depend on m). Hence the action of the raising operator has to give a null state at a certain point.
This happens only when m(m + 1) = mmax(mmax + 1) = µ2. Starting from the state |mmax⟩ one can apply the
lowering operator to decrease the value of m. As before after a finite number of steps one has to find a null state

(τ−)n+1|mmax⟩ ∝ τ−|mmax − n⟩ = 0 for some n,

and this will happen when (m− n)(m− n− 1) = mmin(mmin − 1) = µ2. Matching the two relations one finds

mmin(mmin − 1) = mmax(mmax + 1) =⇒ mmax = −mmin.

Moreover mmin has been obtained starting from mmax with an integer number of steps equal to 2mmax +1. This
restricts the value of mmax to be a positive integer or semi-integer. Summarizing, using the notation mmax = j,
an irreducible representation of the Algebra of SU(2) is characterized by

4



• A vector space with dimension 2j + 1 with a basis given by the eigenvectors of τ3:

{|m⟩} , −j ≤ m ≤ j.

• The generators on this vector space are represented as follows

τ3|m⟩ = m|m⟩,
3∑

a=1

τaτa|m⟩ = µ2|m⟩ = j(j + 1)|m⟩,

τ±|m⟩ = 1√
2

√
j(j + 1)−m(m± 1)|m± 1⟩.

As already said, these are representation of the algebra and therefore also of the SU(2) group. Not all of them
are representations of SO(3). The problem arises when one tries to pass from the algebra (which is somehow a
local representation of the group) to a global representation of the group. SO(3) has indeed the property that a
rotation of 2π around any axis must coincide with the identity. This restricts the value of j to be only integer (we
will see it explicitly in some example).

Finally one can consider some representation:

• j = 0 is the trivial representation and is called scalar representation.

• j = 1/2 is the first non trivial one. It’s only a representation of SU(2) and is called spinorial representation.
It’s composed by two states labelled by the value of j and m: |j = 1/2,m = ±1/2⟩.

• j = 1 is a representation of both groups. It is called vectorial representation and corresponds to the adjoint
of SU(2) or the fundamental of SO(3). A basis for this representation is given by three states labelled by

|1, 1⟩, |1, 0⟩, |1,−1⟩.

Exercise 3

• By definition of direct sum we can write D in block diagonal form,

D =

(
D1 0
0 D2

)
It then follows trivially that D is a representation (in matrix products of D’s, D1’s and D2’s will never mix
up, and since individually D1 and D2 are representations, so will D be).

It is also clear that the vector v1 ⊕ v2 = (v1, v2) has dimV1 + dimV2 components. So

dimV1 ⊕ V2 = dimV1 + dimV2.

For the final part of the question note that we can write A in blocks according to the V1 and V2 subspaces,

A =

(
A11 A12

A21 A22

)
. (1)

By hypothesis the two matrices

AD =

(
A11D1 A12D2

A21D1 A22D2

)
, DA =

(
D1A11 D1A12

D2A21 D2A22

)
. (2)

are equal. Given that D1 and D2 are inequivalent, the equality of the off-diagonal elements A12D2 = D1A12

and A21D1 = D2A21 imply, by the second Shur’s lemma, A12 = A21 = 0. Given that D1 and D2 are
irreducible, the equality of the diagonal elements A11D1 = D1A11, A22D2 = D2A22 imply, by the first Shur’s
lemma, that A11 = λ1I and A22 = λ2I.
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• Given two vector spaces V1, V2, with vectors |v1⟩, |v2⟩, the tensor product of the two is the set of all possible
pairs:

V1 ⊗ V2 = {|v1⟩ ⊗ |v2⟩ , where vi ∈ Vi} .

Moreover, the tensor product is distributive,

(|v1⟩+ |w1⟩)⊗ |v2⟩ = |v1⟩ ⊗ |v2⟩+ |w1⟩ ⊗ |v2⟩, |v1⟩ ⊗ (|v2⟩+ | w2⟩) = |v1⟩ ⊗ |v2⟩+ |v1⟩ ⊗ |w2⟩.

In addition it can be shown that a basis of the tensor product of two vector spaces is given by all the possible
pairs obtained by taking one element from the basis of the first vector space and one element from the basis
of the second vector space.

The representation acting on the tensor product space is called tensor product representation, and it is easy
to show that indeed it is a true representation of the group (even if, in general, it is reducible). Denoting by
D1(g) and D2(g) two representations of the same element g of a given group G, acting on vector spaces V1

and V2, the tensor product representation D1(g)⊗D2(g) ≡ D1⊗2(g), has the following properties:

D1⊗2(ga)D
1⊗2(gb) ≡ (D1(ga)⊗D2(ga))(D

1(gb)⊗D2(gb)) = D1(ga)D
1(gb)⊗D2(ga)D

2(gb)

= D1(ga ◦ gb)⊗D2(ga ◦ gb) = D1⊗2(ga ◦ gb),
D1⊗2(e) = D1(e)⊗D2(e) = 1V1 ⊗ 1V2 = 1V ,

where V is the tensor product space V = V1 ⊗ V2.
In passing from first to second line it has been employed the fact thatD1 andD2 act on different vector spaces,
thus they commute (note that this is true even if D1 and D2 are two copies of the same representation).
The system above shows that the tensor product representation is a representation of G.
It is also possible to build explicitly the generators of the group in the tensor product representation.
Denoting as (ta1)ij and (ta2)xy the generators in representations D1 and D2 respectively, one can write down
the expression for an element near to the identity in representation D1⊗2 as[

D1(α)
]
ij

[
D2(α)

]
xy

=
[
D1⊗2(α)

]
ijxy

= [δij + iαa(ta1)ij ][δxy + iαa(ta2)xy] +O(a2)

= δijδxy + iαa [(ta1)ijδxy + δij(t
a
2)xy] +O(α2),

which can be written in tensor product notation as

D1(α)⊗D2(α) = D1⊗2(α) = [1V1 + iαata1 ]⊗ [1V2 + iαata2 ] +O(a2)

= 1V + iαa [ta1 ⊗ 1V2 + 1V1 ⊗ ta2 ] +O(α2).

The operators in squared parentheses are the generators in the tensor product representation.
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